3 resultados para variability

em WestminsterResearch - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design analysis of novel tunable narrow-band bandpass sigma-delta modulators, that can achieve concurrent multiple noise-shaping for multi-tone input signals. This approach utilises conventional comb filters in conjunction with FIR, or allpass IIR fractional delay filters, to deliver the desired nulls for the quantisation noise transfer function. Detailed simulation results show that FIR fractional delay comb filter based sigma-delta modulators tune accurately to most centre frequencies, but suffer from degraded resolution at frequencies close to Nyquist. However, superior accuracies are obtained from their allpass IIR fractional delay counterpart at the expense of a slight shift in noise-shaping bands at very high frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The Finometer (FMS, Finapres Measurement Systems, Amsterdam) records the beat-to-beat finger pulse contour and has been recommended for research studies assessing shortterm changes of blood pressure and its variability. Variability measured in the frequency domain using spectral analysis requires that the impact of breathing be restricted to high frequency spectra (> 0.15 Hz) so data from participants needs to be excluded when the breathing impact occurs in the low frequency spectra (0.04 - 0.15 Hz). This study tested whether breathing frequency can be estimated from standard Finometer recordings using either stroke volume oscillation frequency or spectral stroke volume variability maximum scores. Methods: 22 healthy volunteers were tested for 270s in the supine and upright positions. Finometer recorded the finger pulse contour and a respiratory transducer recorded breathing. Stoke volume oscillation frequency was calculated manually while the stroke volume spectral maximums were obtained using the software Cardiovascular Parameter Analysis (Nevrokard Kiauta, Izola, Slovenia). These estimates were compared to the breathing frequency using the Bland-Altman procedures. Results: Stroke volume oscillation frequency estimated breathing frequency to <±10% 95% levels of agreement in both supine (-7.7 to 7.0%) and upright (-6.7 to 5.4%) postures. Stroke volume variability maximum scores did not accurately estimate breathing frequency. Conclusions: Breathing frequency can be accurately derived from standard Finometer recordings using stroke volume oscillations for healthy individuals in both supine and upright postures. The Finometer can function as a standalone instrument in blood pressure variability studies and does not require support equipment to determine breathing frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantity of blood arriving at the left side of the heart oscillates throughout the breathing cycle due to the mechanics of breathing. Neurally regulated fluctuations in the length of the heart period act to dampen oscillations of the left ventricular stroke volume entering the aorta. We have reported that stroke volume oscillations but not spectral frequency variability stroke volume measures can be used to estimate the breathing frequency. This study investigated with the same recordings whether heart period oscillations or spectral heart rate variability measures could function as estimators of breathing frequency. Continuous 270 s cardiovascular recordings were obtained from 22 healthy adult volunteers in the supine and upright postures. Breathing was recorded simultaneously. Breathing frequency and heart period oscillation frequency were calculated manually, while heart rate variability spectral maximums were obtained using heart rate variability software. These estimates were compared to the breathing frequency using the Bland–Altman agreement procedure. Estimates were required to be \±10% (95% levels of agreement). The 95% levels of agreement measures for the heart period oscillation frequency (supine: -27.7 to 52.0%, upright: -37.8 to 45.9%) and the heart rate variability spectral maximum estimates (supine: -48.7 to 26.5% and -56.4 to 62.7%, upright: -37.8 to 39.3%) exceeded 10%. Multiple heart period oscillations were observed to occur during breathing cycles. Both respiratory and non-respiratory sinus arrhythmia was observed amongst healthy adults. This observation at least partly explains why heart period parameters and heart rate variability parameters are not reliable estimators of breathing frequency. In determining the validity of spectral heart rate variability measurements we suggest that it is the position of the spectral peaks and not the breathing